Surface modification of Fe2TiO5 nanoparticles by silane coupling agent: Synthesis and application in proton exchange composite membranes

J Colloid Interface Sci. 2016 Jun 15:472:135-44. doi: 10.1016/j.jcis.2016.03.036. Epub 2016 Mar 17.

Abstract

Modifying surfaces of nanoparticles with silane coupling agent provides a simple method to alter their surface properties and improve their dispersibility in organic solvents and polymer matrix. Fe2TiO5 nanoparticles (IT) were modified with 3-aminopropyltriethoxysilane (APTES) as novel reinforcing filler for proton exchange membranes. The main operating parameters such as reaction time (R.T), APTES/IT and triethylamine (TEA)/IT ratios have been optimized for maximum grafting efficiency. The optimum conditions for R.T, APTES/IT and TEA/IT ratios were 6h, 4 and 0.3 respectively. It was observed that the APTES/IT and TEA/IT ratios were the most significant parameters affecting the grafting percentage. Modified nanoparticles were characterized using FT-IR, TGA, SEM, TEM and XRD techniques. Effects of modified nanoparticles in proton exchange membrane fuel cells (PEMFC) were evaluated. The resulting nanocomposite membranes exhibited higher proton conductivity in comparison with pristine SPPEK and SPPEK/IT membranes. This increase is attributed to connectivity of the water channels which creates more direct pathways for proton transport. Composite membrane with 3% AIT (6.46% grafting amount) showed 0.024 S cm(-1) proton conductivity at 25 °C and 149 mW cm(-2) power density (at 0.5V) at 80 °C which were about 243% and 51%, respectively higher than that of pure SPPEK.

Keywords: Fe(2)TiO(5) nanoparticles; Grafting efficiency; Proton exchange membrane; Silane coupling agent; Surface modification; Taguchi method.

Publication types

  • Research Support, Non-U.S. Gov't