The nitrite reductase activity of horse heart carboxymethylated-cytochrome c is modulated by cardiolipin

J Biol Inorg Chem. 2016 Jun;21(3):421-32. doi: 10.1007/s00775-016-1351-1. Epub 2016 Mar 24.

Abstract

Horse heart carboxymethylated cytc (CM-cytc) displays myoglobin-like properties. Here, the effect of cardiolipin (CL) liposomes on the nitrite reductase activity of ferrous CM-cytc [CM-cytc-Fe(II)], in the presence of sodium dithionite, is reported between pH 5.5 and 7.6, at 20.0 °C. Cytc-Fe(II) displays a very low value of the apparent second-order rate constant for the NO2 (-)-mediated conversion of cytc-Fe(II) to cytc-Fe(II)-NO [k on = (7.3 ± 0.7) × 10(-2) M(-1) s(-1); at pH 7.4], whereas the value of k on for NO2 (-) reduction by CM-cytc-Fe(II) is 1.1 ± 0.2 M(-1) s(-1) (at pH 7.4). CL facilitates the NO2 (-)-mediated nitrosylation of CM-cytc-Fe(II) in a dose-dependent manner, the value of k on for the NO2 (-)-mediated conversion of CL-CM-cytc-Fe(II) to CL-CM-cytc-Fe(II)-NO (5.6 ± 0.6 M(-1) s(-1); at pH 7.4) being slightly higher than that for the NO2 (-)-mediated conversion of CL-cytc-Fe(II) to CL-cytc-Fe(II)-NO (2.6 ± 0.3 M(-1) s(-1); at pH 7.4). The apparent affinity of CL for CM-cytc-Fe(II) is essentially pH independent, the average value of B being (1.3 ± 0.3) × 10(-6) M. In the absence and presence of CL liposomes, the nitrite reductase activity of CM-cytc-Fe(II) increases linearly on lowering pH and the values of the slope of the linear fittings of Log k on versus pH are -1.05 ± 0.07 and -1.03 ± 0.03, respectively, reflecting the involvement of one proton for the formation of the transient ferric form, NO, and OH(-). These results indicate that Met80 carboxymethylation and CL binding cooperate in the stabilization of the highly reactive heme-Fe atom of CL-CM-cytc.

Keywords: Cardiolipin liposomes; Horse heart carboxymethylated-cytochrome c; Kinetics; Nitrite reductase activity.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Cardiolipins / metabolism*
  • Cytochromes c / metabolism*
  • Ferrous Compounds / metabolism
  • Heart
  • Horses
  • Methylation
  • Nitrite Reductases / metabolism*

Substances

  • Cardiolipins
  • Ferrous Compounds
  • Cytochromes c
  • Nitrite Reductases