Electrokinetic Properties of the Pristine and Oxidized MWCNT Depending on the Electrolyte Type and Concentration

Nanoscale Res Lett. 2016 Dec;11(1):166. doi: 10.1186/s11671-016-1367-z. Epub 2016 Mar 24.

Abstract

Electrostatic stabilization is reduced in its efficiency in an electrolyte-containing environment. The effect of electrolyte concentration is mostly described as negative factor for dispersion stabilization. Usually, zeta potential and physical stability decrease at increasing electrolyte concentration. The purpose of the present study was to measure the surface properties of nanotubes in aqueous solution of monovalent electrolytes at different concentration. Characteristics such as size distribution, surface chemistry, surface charge, and dispersability in aqueous phase have been identified. Hydrodynamic size and zeta potential in aqueous multiwalled carbon nanotube (MWCNT) suspensions were determined at different pH with the desired concentrations of electrolyte of the cationic group (NaCl, KCl, CsCl) and the anionic group (NaClO4). The correlations between the response of the surface functionality of pristine and oxidized multiwalled carbon nanotubes and electrical double layer (EDL) forming at different ionic environments in the vicinity of a nanotube surface were determined. The nanotube dispersion stabilization was found to be more affected by ion size and pH medium then electrolyte concentration. The data obtained confirms the predominant role of surface reactions. The most stable dispersion of nanotubes was achieved in KCl electrolyte solution at less negative charge of the surface.

Keywords: Aqueous dispersion; Electrolyte concentration; Monovalent electrolytes; Multiwalled carbon nanotubes; Size distribution; Surface charge; Zeta potential.