A structural comparison of Listeria monocytogenes protein chaperones PrsA1 and PrsA2 reveals molecular features required for virulence

Mol Microbiol. 2016 Jul;101(1):42-61. doi: 10.1111/mmi.13367. Epub 2016 May 27.

Abstract

Listeria monocytogenes is a Gram-positive environmental bacterium that lives within soil but transitions into a pathogen upon contact with a mammalian host. The transition of L. monocytogenes from soil dweller to cytosolic pathogen is dependent upon secreted virulence factors that mediate cell invasion and intracellular growth. PrsA1 and PrsA2 are secreted bacterial lipoprotein chaperones that contribute to the folding of proteins translocated across the bacterial membrane; PrsA2 is required for L. monocytogenes virulence, whereas the function of PrsA1 remains to be determined. We have solved an X-ray crystal structure of PrsA1 and have used this model to guide comparison structure-based mutagenesis studies with PrsA2. Targeted mutagenesis of PrsA2 demonstrates that oligomerization of PrsA2 as well as molecular features of the foldase domain are required for protein secretion and virulence, whereas a functional role was uncovered for PrsA1 in bacterial resistance to alcohol. Interestingly, PrsA2 membrane localization is not required for all PrsA2-dependent activities, suggesting that the lipoprotein retains function when released from the bacterial cell. PrsA chaperones are thus multifaceted proteins with distinct domains adapted to accommodate the functional needs of a diverse array of secreted substrates.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Bacillus subtilis / enzymology
  • Crystallography, X-Ray
  • Cytosol / enzymology
  • Cytosol / metabolism
  • Isoenzymes
  • Lipoproteins / metabolism
  • Listeria monocytogenes / enzymology
  • Listeria monocytogenes / metabolism*
  • Molecular Chaperones / metabolism
  • Peptidylprolyl Isomerase / chemistry
  • Peptidylprolyl Isomerase / metabolism*
  • Structure-Activity Relationship
  • Virulence
  • Virulence Factors / metabolism

Substances

  • Isoenzymes
  • Lipoproteins
  • Molecular Chaperones
  • Virulence Factors
  • Peptidylprolyl Isomerase
  • PrsA2 protein, Listeria monocytogenes