An estuarine species of the alga Vaucheria (Xanthophyceae) displays an increased capacity for turgor regulation when compared to a freshwater species

J Phycol. 2013 Oct;49(5):967-78. doi: 10.1111/jpy.12106. Epub 2013 Aug 27.

Abstract

Turgor regulation is the process by which walled organisms alter their internal osmotic potential to adapt to osmotic changes in the environment. Apart from a few studies on freshwater oomycetes, the ability of stramenopiles to turgor regulate has not been investigated. In this study, turgor regulation and growth were compared in two species of the stramenopile alga Vaucheria, Vaucheria erythrospora isolated from an estuarine habitat, and Vaucheria repens isolated from a freshwater habitat. Species were identified using their rbcL sequences and respective morphologies. Using a single cell pressure probe to directly measure turgor in Vaucheria after hyperosmotic shock, V. erythrospora was found to recover turgor after a larger shock than V. repens. Threshold shock values for this ability were >0.5 MPa for V. erythrospora and <0.5 MPa for V. repens. Recovery was more rapid in V. erythrospora than V. repens after comparable shocks. Turgor recovery in V. erythrospora was inhibited by Gd(3+) and TEA, suggesting a role for mechanosensitive channels, nonselective cation channels, and K(+) channels in the process. Growth studies showed that V. erythrospora was able to grow over a wider range of NaCl concentrations. These responses may underlie the ability of V. erythrospora to survive in an estuarine habitat and restrict V. repens to freshwater. The fact that both species can turgor regulate may indicate a fundamental difference between members of the Stramenopila, as research to date on oomycetes suggests they are unable to turgor regulate.

Keywords: Stramenopila; Vaucheria; hyperosmotic shock; pressure probe; turgor regulation; yellow green alga.

Associated data

  • GENBANK/AF476958
  • GENBANK/JX860518
  • GENBANK/JX860519