Cupriavidus nantongensis sp. nov., a novel chlorpyrifos-degrading bacterium isolated from sludge

Int J Syst Evol Microbiol. 2016 Jun;66(6):2335-2341. doi: 10.1099/ijsem.0.001034. Epub 2016 Mar 21.

Abstract

A Gram-stain-negative, aerobic, coccoid to small rod-shaped bacterium, designated X1T, was isolated from sludge collected from the vicinity of a pesticide manufacturer in Nantong, Jiangsu Province, China. Based on 16S rRNA gene sequence analysis, strain X1T belonged to the genus Cupriavidus, and was most closely related to Cupriavidus taiwanensis LMG 19424T (99.1 % 16S rRNA gene sequence similarity) and Cupriavidus alkaliphilus LMG 26294T (98.9 %). Strain X1T showed 16S rRNA gene sequence similarities of 97.2-98.2 % with other species of the genus Cupriavidus. The major cellular fatty acids of strain X1T were C16 : 0, C16 : 1ω7c and/or iso-C15 : 0 2-OH (summed feature 3), C18 : 1ω7c and C17 : 0 cyclo, and the major respiratory quinone was ubiquinone Q-8. The major polar lipids of strain X1T were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylethanolamine, aminophospholipid, phospholipid and hydroxyphosphatidylethanolamine. The DNA G+C content was 66.6 mol%. The DNA-DNA relatedness values of strain X1T with the five reference strains C. taiwanensis LMG 19424T, C. alkaliphilus LMG 26294T, Cupriavidus necator LMG 8453T, Cupriavidus gilardii LMG 5886T and 'Cupriavidus yeoncheonense' KCTC 42053 were lower than 70 %. The results obtained from phylogenetic analysis, phenotypic characterization and DNA-DNA hybridization indicated that strain X1T should be proposed to represent a novel species of the genus Cupriavidus, for which the name Cupriavidus nantongensis sp. nov. is proposed. The type strain is X1T (=KCTC 42909T=LMG 29218T).

MeSH terms

  • Bacterial Typing Techniques
  • Base Composition
  • China
  • Chlorpyrifos / metabolism*
  • Cupriavidus / classification*
  • Cupriavidus / genetics
  • Cupriavidus / isolation & purification
  • DNA, Bacterial / genetics
  • Fatty Acids / chemistry
  • Nucleic Acid Hybridization
  • Phospholipids / chemistry
  • Phylogeny*
  • RNA, Ribosomal, 16S / genetics
  • Sequence Analysis, DNA
  • Sewage / microbiology*
  • Ubiquinone / chemistry

Substances

  • DNA, Bacterial
  • Fatty Acids
  • Phospholipids
  • RNA, Ribosomal, 16S
  • Sewage
  • Ubiquinone
  • ubiquinone 8
  • Chlorpyrifos