High-Performance Water Electrolysis System with Double Nanostructured Superaerophobic Electrodes

Small. 2016 May;12(18):2492-8. doi: 10.1002/smll.201600189. Epub 2016 Mar 21.

Abstract

Catalysts screening and structural optimization are both essential for pursuing a high-efficient water electrolysis system (WES) with reduced energy supply. This study demonstrates an advanced WES with double superaerophobic electrodes, which are achieved by constructing a nanostructured NiMo alloy and NiFe layered double hydroxide (NiFe-LDH) films for hydrogen evolution and oxygen evolution reactions, respectively. The superaerophobic property gives rise to significantly reduced adhesion forces to gas bubbles and thereby accelerates the hydrogen and oxygen bubble releasing behaviors. Benefited from these metrics and the high intrinsic activities of catalysts, this WES affords an early onset potential (≈1.5 V) for water splitting and ultrafast catalytic current density increase (≈0.83 mA mV(-1) ), resulting in ≈2.69 times higher performance compared to the commercial Pt/C and IrO2 /C catalysts based counterpart under 1.9 V. Moreover, enhanced performance at high temperature as well as prominent stability further demonstrate the practical application of this WES.

Keywords: high current density; superaerophobic surfaces; water splitting.

Publication types

  • Research Support, Non-U.S. Gov't