Leak-tight vertical membrane microvalves

Lab Chip. 2016 Apr 21;16(8):1439-46. doi: 10.1039/c5lc01457c.

Abstract

Pneumatic microvalves are fundamental control components in a large range of microfluidic applications. Their key performance parameters are small size, i.e. occupying a minimum of microfluidic real estate, low flow resistance in the open state, and leak-tight closing at limited control pressures. In this work we present the successful design, realization and evaluation of the first leak-tight, vertical membrane, pneumatic microvalves. The realization of the vertical membrane microvalves is enabled by a novel dual-sided molding method for microstructuring monolithic 3D microfluidic networks in PDMS in a single step, eliminating the need for layer-to-layer alignment during bonding. We demonstrate minimum lateral device features down to 20-30 μm in size, and vertical via density of ∼30 000 per cm(2), which provides significant gains in chip real estate compared to previously reported PDMS manufacturing methods. In contrast to horizontal membrane microvalves, there are no manufacturing restrictions on the cross-sectional geometry of the flow channel of the vertical membrane microvalves. This allows tuning the design towards lower closing pressure or lower open state flow resistance compared to those of horizontal membrane microvalves.

Publication types

  • Research Support, Non-U.S. Gov't