Magnetic Anisotropies in Rhombic Lanthanide(III) Complexes Do Not Conform to Bleaney's Theory

Inorg Chem. 2016 Apr 4;55(7):3490-7. doi: 10.1021/acs.inorgchem.5b02918. Epub 2016 Mar 15.

Abstract

We report a complete set of magnetic susceptibilities of lanthanide complexes with a macrocyclic ligand based on a 3,6,10,13-tetraaza-1,8(2,6)-dipyridinacyclotetradecaphane platform containing four hydroxyethyl pendant arms (L(1)). The [LnL(1)](3+) complexes are isostructural along the lanthanide series from Ce(3+) to Yb(3+), with the only structural change observed along the series being the monotonous shortening of the Ln-donor distances due to lanthanide contraction. The (1)H NMR spectra point to a D2 symmetry of the [LnL(1)](3+) complexes in aqueous solution, which provides a unique opportunity for analysis of the rhombic magnetic anisotropies with an unequivocal location of the magnetic axes. The contact contributions for the observed paramagnetic shifts have been estimated with density functional theory calculations on the [GdL(1)](3+) complex. Subsequently, the pseudocontact shifts could be factored out, thereby giving access to the axial and rhombic contributions of the magnetic susceptibility tensor. Our results show that the calculated magnetic anisotropies do not follow the trends predicted by Bleaney's theory, particularly in the case of Ho(3+) and Er(3+) complexes.

Publication types

  • Research Support, Non-U.S. Gov't