Theoretical and Synthetic Study on the Existence, Structures, and Bonding of the Halide-Bridged [B2X7](-) (X = F, Cl, Br, I) Anions

Inorg Chem. 2016 Apr 4;55(7):3599-604. doi: 10.1021/acs.inorgchem.6b00118. Epub 2016 Mar 15.

Abstract

While hydrogen bridging is very common in boron chemistry, halogen bridging is rather rare. The simplest halogen-bridged boron compounds are the [B2X7](-) anions (X = F, Cl, Br, I), of which only [B2F7](-) has been reported to exist experimentally. In this paper a detailed theoretical and synthetic study on the [B2X7](-) anions is presented. The structures of [B2X7](-) anions have been calculated at the MP2/def2-TZVPP level of theory, and their local minima have been shown to be of C2 symmetry in all cases. The bonding situation varies significantly between the different anions. While in [B2F7](-) the bonding is mainly governed by electrostatics, the charge is almost equally distributed over all atoms in [B2I7](-) and additional weak iodine···iodine interactions are observed. This was shown by an atoms in molecules (AIM) analysis. The thermodynamic stability of the [B2X7](-) anions was estimated in all phases (gas, solution, and solid state) based on quantum-chemical calculations and estimations of the lattice enthalpies using a volume-based approach. In the gas phase the formation of [B2X7](-) anions from [BX4](-) and BX3 is favored in accord with the high Lewis acidity of the BX3 molecules. In solution and in the solid state only [B2F7](-) is stable against dissociation. The other three anions are borderline cases, which might be detectable under favorable conditions. However, experimental attempts to identify [B2X7](-) (X = Cl, Br, I) anions in solution by (11)B NMR spectroscopy and to prepare stable [PNP][B2X7] salts failed.

Publication types

  • Research Support, Non-U.S. Gov't