Zero-static-power phase-change optical modulator

Opt Lett. 2016 Mar 15;41(6):1177-80. doi: 10.1364/OL.41.001177.

Abstract

This Letter presents an innovative design of an electro-optical modulator using germanium telluride (GeTe) phase change material with an integrated nano-heater. The refractive index and the electrical conductivity of GeTe significantly change as the GeTe goes though the crystallographic phase change. Amorphization and crystallization of GeTe is achieved using the Joule heating method by passing current through an array of metal gratings, where GeTe fills the slits between the metal lines. These metal slits also increase the contrast between the amorphous (on) and crystalline (off) phases of the modulator by having extraordinary transmission and reflection response based on interactions of surface plasmon polaritons (SPPs) with the incoming light. The modulator is designed for 1550 nm wavelength, where GeTe is transparent in the amorphous phase and provides high optical on/off contrast. The metal-insulator-metal (MIM) is designed in such a way to only support SPP excitation when GeTe is crystalline and slit resonance when it is amorphous to increase the modulation index. The modulator is stable in both phases with higher than 12 dB change in transmission with zero static power consumption at room temperature.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.