Effects of static magnetic fields on bone regeneration of implants in the rabbit: micro-CT, histologic, microarray, and real-time PCR analyses

Clin Oral Implants Res. 2017 Apr;28(4):396-405. doi: 10.1111/clr.12812. Epub 2016 Mar 11.

Abstract

Objectives: The aim of this study was to investigate the effects of static magnetic fields (SMFs) on bone regeneration around titanium implants by μCT, histologic analysis, microarrays, and quantitative real-time PCR (qRT-PCR).

Materials and methods: Neodymium magnets provided the source of SMFs, the specimens were grade 5 titanium implants, and the animals were twenty-seven adult male New Zealand white rabbits. These implants were divided into six groups according to the presence of a magnet and predetermined healing period (1, 4, and 8 weeks). Each group comprised six specimens for μCT (n = 6) and histologic examination, and three specimens (n = 3) for microarrays and qRT-PCR, yielding a total of 54 specimens.

Results: The μCT data showed that SMFs increased bone volume fraction (bone volume/total volume, BV/TV), trabecular number (Tb.N), and trabecular thickness (Tb.Th). Histologic observation indicated that SMFs promoted new bone formation and direct bony contact with implants. Microarray analysis identified 293 genes upregulated (>twofold) in response to SMFs. The upregulated genes included extracellular matrix (ECM)-related genes (COL10A1, COL9A1, and COL12A1) and growth factor (GF)-related genes (CTGF and PDGFD), and the upregulation was confirmed by qRT-PCR. Gene Ontology (GO) and pathway analysis revealed the involvement of the mitogen-activated protein kinase (MAPK), Wnt, and PPAR-gamma signaling pathways in implant healing.

Conclusions: μCT, histology, microarrays, and real-time PCR indicate that SMFs could be an effective approach to improving bone regeneration around dental implants.

Keywords: bone regeneration; implant; micro-computed tomography; microarray; static magnetic fields.

MeSH terms

  • Animals
  • Bone Regeneration / physiology*
  • Dental Implants*
  • Magnetic Field Therapy / methods*
  • Male
  • Rabbits
  • Real-Time Polymerase Chain Reaction
  • Tissue Array Analysis
  • Titanium*
  • X-Ray Microtomography

Substances

  • Dental Implants
  • Titanium

Associated data

  • GENBANK/XM_002714724
  • GENBANK/ENSOCUT00000012381
  • GENBANK/NM_024690
  • GENBANK/AB217855
  • GENBANK/NM_001195762
  • GENBANK/NM_001082253
  • GENBANK/AY974248
  • GENBANK/XM_002708747
  • GENBANK/XM_002715779
  • GENBANK/ENSOCUT00000021977
  • GENBANK/ENSOCUT00000005539
  • GENBANK/ENSOCUT00000001813
  • GENBANK/ENSOCUT00000014193
  • GENBANK/ENSOCUT00000014907
  • GENBANK/ENSOCUT00000017513
  • GENBANK/ENSOCUT00000010375
  • GENBANK/ENSOCUT00000021705
  • GENBANK/XM_002717087
  • GENBANK/XM_002716757
  • GENBANK/ENSOCUT00000008470
  • GENBANK/ENSOCUT00000014391
  • GENBANK/NM_001082338
  • GENBANK/XM_002712143
  • GENBANK/ENSOCUT00000014926
  • GENBANK/ENSOCUT00000006452
  • GENBANK/ENSOCUT00000026900
  • GENBANK/XM_002714453
  • GENBANK/ENSOCUT00000031184
  • GENBANK/XM_002714557
  • GENBANK/AY649415
  • GENBANK/XM_002720302
  • GENBANK/ENSOCUT00000003766
  • GENBANK/ENSOCUT00000000612
  • GENBANK/XM_002711736
  • GENBANK/ENSOCUT00000002897
  • GENBANK/ENSOCUT00000028785
  • GENBANK/ENSOCUT00000026214
  • GENBANK/ENSOCUT00000015841
  • GENBANK/ENSOCUT00000005116
  • GENBANK/XM_002720389
  • GENBANK/XM_002711554
  • GENBANK/NM_001082737
  • GENBANK/NM_001171040
  • GENBANK/AF097708
  • GENBANK/AF123437
  • GENBANK/ENSOCUT00000021095
  • GENBANK/NM_001082089
  • GENBANK/NM_001195837
  • GENBANK/ENSOCUT00000005211
  • GENBANK/XM_002719635
  • GENBANK/ENSOCUT00000024584
  • GENBANK/ENSOCUT00000033124
  • GENBANK/ENSOCUT00000023601
  • GENBANK/ENSOCUT00000001472
  • GENBANK/ENSOCUT00000008272
  • GENBANK/ENSOCUT00000025361
  • GENBANK/XM_002710753
  • GENBANK/XM_002718617
  • GENBANK/NM_001171139
  • GENBANK/ENSOCUT00000008304
  • GENBANK/ENSOCUT00000006713
  • GENBANK/ENSOCUT00000010245