Antigen-encoding bone marrow terminates islet-directed memory CD8+ T-cell responses to alleviate islet transplant rejection

Diabetes. 2016 May;65(5):1328-1340. doi: 10.2337/db15-1418. Epub 2016 Mar 9.

Abstract

Islet-specific memory T cells arise early in type 1 diabetes (T1D), persist for long periods, perpetuate disease and are rapidly reactivated by islet transplantation. As memory T cells are poorly controlled by 'conventional' therapies, memory T-cell mediated attack is a substantial challenge in islet transplantation and this will extend to application of personalized approaches using stem-cell derived replacement β cells. New approaches are required to limit memory autoimmune attack of transplanted islets or replacement β cells. Here we show that transfer of bone marrow encoding cognate antigen directed to dendritic cells, under mild, immune-preserving conditions inactivates established memory CD8+ T-cell populations and generates a long-lived, antigen-specific tolerogenic environment. Consequently, CD8+ memory T cell-mediated targeting of islet-expressed antigens is prevented and islet graft rejection alleviated. The immunological mechanisms of protection are mediated through deletion and induction of unresponsiveness in targeted memory T-cell populations. The data demonstrate that hematopoietic stem cell-mediated gene therapy effectively terminates antigen-specific memory T-cell responses and this can alleviate destruction of antigen-expressing islets. This addresses a key challenge facing islet transplantation and importantly, the clinical application of personalized β-cell replacement therapies using patient-derived stem cells.