β-Ag3 RuO4, a Ruthenate(V) Featuring Spin Tetramers on a Two-Dimensional Trigonal Lattice

Angew Chem Int Ed Engl. 2016 Mar 24;55(14):4467-71. doi: 10.1002/anie.201510576. Epub 2016 Mar 4.

Abstract

Open-shell solids exhibit a plethora of intriguing physical phenomena that arise from a complex interplay of charge, spin, orbital, and spin-state degrees of freedom. Comprehending these phenomena is an indispensable prerequisite for developing improved functional materials. This type of understanding can be achieved, on the one hand, by experimental and theoretical investigations into known systems, or by synthesizing new solids displaying unprecedented structural and/or electronic features. β-Ag3 RuO4 may serve as such a model system because it possesses a remarkable anionic structure, consisting of tetrameric polyoxoanions (Ru4 O16 )(12-) , and is an embedded fragment of a 2D trigonal MO2 lattice. The notorious frustration of antiferromagnetic (AF) exchange couplings on such lattices is thus lifted, and instead strong AF occurs within the oligomeric anion, where only one exchange path remains frustrated among the relevant six. The strong magnetic anisotropy of the [Ru4 O16 ](12-) ion, and the effectively orbital nature of its net magnetic moment, implies that this anion may reveal the properties of a single-molecule magnet if well-diluted in a diamagnetic matrix.

Keywords: antiferromagnetism; hydrothermal synthesis; magnetic anisotropy; oxoruthenates; trigonal spin lattices.