Toxicity of heavy metals and metal-containing nanoparticles on plants

Biochim Biophys Acta. 2016 Aug;1864(8):932-44. doi: 10.1016/j.bbapap.2016.02.020. Epub 2016 Mar 3.

Abstract

Plants are under the continual threat of changing climatic conditions that are associated with various types of abiotic stresses. In particular, heavy metal contamination is a major environmental concern that restricts plant growth. Plants absorb heavy metals along with essential elements from the soil and have evolved different strategies to cope with the accumulation of heavy metals. The use of proteomic techniques is an effective approach to investigate and identify the biological mechanisms and pathways affected by heavy metals and metal-containing nanoparticles. The present review focuses on recent advances and summarizes the results from proteomic studies aimed at understanding the response mechanisms of plants under heavy metal and metal-containing nanoparticle stress. Transport of heavy metal ions is regulated through the cell wall and plasma membrane and then sequestered in the vacuole. In addition, the role of different metal chelators involved in the detoxification and sequestration of heavy metals is critically reviewed, and changes in protein profiles of plants exposed to metal-containing nanoparticles are discussed in detail. Finally, strategies for gaining new insights into plant tolerance mechanisms to heavy metal and metal-containing nanoparticle stress are presented. This article is part of a Special Issue entitled: Plant Proteomics--a bridge between fundamental processes and crop production, edited by Dr. Hans-Peter Mock.

Keywords: Heavy metal; Metal containing nanoparticles; Metallothioneins; Phytochelatins; Proteomics.

Publication types

  • Review

MeSH terms

  • Cell Membrane / metabolism*
  • Crops, Agricultural / metabolism*
  • Metal Nanoparticles*
  • Metals, Heavy / metabolism*
  • Stress, Physiological*
  • Vacuoles / metabolism*

Substances

  • Metals, Heavy