Compartmentalization of an all-E. coli Cell-Free Expression System for the Construction of a Minimal Cell

Artif Life. 2016 Spring;22(2):185-95. doi: 10.1162/ARTL_a_00198. Epub 2016 Mar 2.

Abstract

Cell-free expression is a technology used to synthesize minimal biological cells from natural molecular components. We have developed a versatile and powerful all-E. coli cell-free transcription-translation system energized by a robust metabolism, with the far objective of constructing a synthetic cell capable of self-reproduction. Inorganic phosphate (iP), a byproduct of protein synthesis, is recycled through polysugar catabolism to regenerate ATP (adenosine triphosphate) and thus supports long-lived and highly efficient protein synthesis in vitro. This cell-free TX-TL system is encapsulated into cell-sized unilamellar liposomes to express synthetic DNA programs. In this work, we study the compartmentalization of cell-free TX-TL reactions, one of the aspects of minimal cell module integration. We analyze the signals of various liposome populations by fluorescence microscopy for one and for two reporter genes, and for an inducible genetic circuit. We show that small nutrient molecules and proteins are encapsulated uniformly in the liposomes with small fluctuations. However, cell-free expression displays large fluctuations in signals among the same population, which are due to heterogeneous encapsulation of the DNA template. Consequently, the correlations of gene expression with the compartment dimension are difficult to predict accurately. Larger vesicles can have either low or high protein yields.

Keywords: Cell-free transcription–translation; cell-free metabolism; encapsulation; gene circuits; minimal cell; synthetic biology.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Cell-Free System*
  • Escherichia coli
  • Protein Biosynthesis*
  • Synthetic Biology*
  • Transcription, Genetic*