Amorphous Phosphorus/Nitrogen-Doped Graphene Paper for Ultrastable Sodium-Ion Batteries

Nano Lett. 2016 Mar 9;16(3):2054-60. doi: 10.1021/acs.nanolett.6b00057. Epub 2016 Feb 29.

Abstract

As the most promising anode material for sodium-ion batteries (SIBs), elemental phosphorus (P) has recently gained a lot of interest due to its extraordinary theoretical capacity of 2596 mAh/g. The main drawback of a P anode is its low conductivity and rapid structural degradation caused by the enormous volume expansion (>490%) during cycling. Here, we redesigned the anode structure by using an innovative methodology to fabricate flexible paper made of nitrogen-doped graphene and amorphous phosphorus that effectively tackles this problem. The restructured anode exhibits an ultrastable cyclic performance and excellent rate capability (809 mAh/g at 1500 mA/g). The excellent structural integrity of the novel anode was further visualized during cycling by using in situ experiments inside a high-resolution transmission electron microscope (HRTEM), and the associated sodiation/desodiation mechanism was also thoroughly investigated. Finally, density functional theory (DFT) calculations confirmed that the N-doped graphene not only contributes to an increase in capacity for sodium storage but also is beneficial in regards to improved rate performance of the anode.

Keywords: amorphous phosphorus; anode; in-situ TEM; phase-transformation; sodium-ion battery.

Publication types

  • Research Support, Non-U.S. Gov't