Matefin/SUN-1 Phosphorylation on Serine 43 Is Mediated by CDK-1 and Required for Its Localization to Centrosomes and Normal Mitosis in C. elegans Embryos

Cells. 2016 Feb 24;5(1):8. doi: 10.3390/cells5010008.

Abstract

Matefin/SUN-1 is an evolutionary conserved C. elegans inner nuclear membrane SUN-domain protein. By creating a bridge with the KASH-domain protein ZYG-12, it connects the nucleus to cytoplasmic filaments and organelles. Matefin/SUN-1 is expressed in the germline where it undergoes specific phosphorylation at its N-terminal domain, which is required for germline development and homologous chromosome pairing. The maternally deposited matefin/SUN-1 is then essential for embryonic development. Here, we show that in embryos, serine 43 of matefin/SUN-1 (S43) is phosphorylated in a CDK-1 dependent manner and is localized throughout the cell cycle mostly to centrosomes. By generating animals expressing phosphodead S43A and phosphomimetic S43E mutations, we show that phosphorylation of S43 is required to maintain centrosome integrity and function, as well as for the localization of ZYG-12 and lamin. Expression of S43E in early embryos also leads to an increase in chromatin structural changes, decreased progeny and to almost complete embryonic lethality. Down regulation of emerin further increases the occurrence of chromatin organization abnormalities, indicating possible collaborative roles for these proteins that is regulated by S43 phosphorylation. Taken together, these results support a role for phosphorylation of serine 43 in matefin/SUN-1 in mitosis.

Keywords: C. elegans; LINC complex; SUN-domain; centrosome; meiosis; mitosis.