Quantitative protein profiling of hippocampus during human aging

Neurobiol Aging. 2016 Mar:39:46-56. doi: 10.1016/j.neurobiolaging.2015.11.029. Epub 2015 Dec 8.

Abstract

The hippocampus appears commonly affected by aging and various neurologic disorders in humans, whereas little is known about age-related change in overall protein expression in this brain structure. Using the 4-plex tandem mass tag labeling, we carried out a quantitative proteomic study of the hippocampus during normal aging using postmortem brains from Chinese subjects. Hippocampal samples from 16 subjects died of non-neurological/psychiatric diseases were divided into 4 age groups: 22-49, 50-69, 70-89, and >90. Among 4582 proteins analyzed, 35 proteins were significantly elevated, whereas 25 proteins were downregulated, along with increasing age. Several upregulated proteins, including transgelin, vimentin, myosin regulatory light polypeptide 9, and calcyphosin, were further verified by quantitative Western blot analysis of hippocampal tissues from additional normal subjects. Bioinformatic analysis showed that the upregulated and downregulated proteins were largely involved in several important protein-protein interaction networks. Proteins in the electron transport chain and synaptic vesicle fusion pathway were consistently downregulated with aging, whereas proteins associated with Alzheimer's disease showed little change. Our study demonstrates substantial protein profile changes in the human hippocampus during aging, which could be of relevance to age-related loss of hippocampal functions.

Keywords: Alzheimer's disease; Brain aging; Electron transport chain; Proteomics; Synaptic vesicle fusion.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Aged
  • Aged, 80 and over
  • Aging / genetics*
  • Aging / metabolism*
  • Asian People
  • Calcium-Binding Proteins / genetics
  • Calcium-Binding Proteins / metabolism
  • Down-Regulation / genetics
  • Electron Transport / genetics
  • Female
  • Gene Expression / genetics*
  • Gene Expression Regulation, Developmental / genetics*
  • Hippocampus / metabolism*
  • Humans
  • Male
  • Microfilament Proteins / genetics*
  • Microfilament Proteins / metabolism*
  • Middle Aged
  • Muscle Proteins / genetics*
  • Muscle Proteins / metabolism*
  • Myosin Light Chains / genetics
  • Myosin Light Chains / metabolism
  • Protein Interaction Domains and Motifs
  • Synaptic Vesicles / genetics
  • Tandem Mass Spectrometry
  • Up-Regulation / genetics
  • Vimentin / genetics*
  • Vimentin / metabolism*
  • Young Adult

Substances

  • CAPS protein, human
  • Calcium-Binding Proteins
  • Microfilament Proteins
  • Muscle Proteins
  • Myosin Light Chains
  • Vimentin
  • transgelin