Selective Photoactivation: From a Single Unit Monomer Insertion Reaction to Controlled Polymer Architectures

J Am Chem Soc. 2016 Mar 9;138(9):3094-106. doi: 10.1021/jacs.5b12408. Epub 2016 Feb 25.

Abstract

Here, we exploit the selectivity of photoactivation of thiocarbonylthio compounds to implement two distinct organic and polymer synthetic methodologies: (1) a single unit monomer insertion (SUMI) reaction and (2) selective, controlled radical polymerization via a visible-light-mediated photoinduced electron/energy transfer-reversible addition-fragmentation chain transfer (PET-RAFT) process. In the first method, precise single unit monomer insertion into a dithiobenzoate with a high reaction yield (>97%) is reported using an organic photoredox catalyst, pheophorbide a (PheoA), under red light irradiation (λmax = 635 nm, 0.4 mW/cm(2)). The exceptional selectivity of PheoA toward dithiobenzoate was utilized in combination with another catalyst, zinc tetraphenylporphine (ZnTPP), for the preparation of a complex macromolecular architecture. PheoA was first employed to selectively activate a dithiobenzoate, 4-cyanopentanoic acid dithiobenzoate, for the polymerization of a methacrylate backbone under red light irradiation. Subsequently, metalloporphyrin ZnTPP was utilized to selectively activate pendant trithiocarbonate moieties for the polymerization of acrylates under green light (λmax = 530 nm, 0.6 mW/cm(2)) to yield well-defined graft co-polymers.

Publication types

  • Research Support, Non-U.S. Gov't