Tumor suppressive role of sestrin2 during colitis and colon carcinogenesis

Elife. 2016 Feb 25:5:e12204. doi: 10.7554/eLife.12204.

Abstract

The mTOR complex 1 (mTORC1) and endoplasmic reticulum (ER) stress pathways are critical regulators of intestinal inflammation and colon cancer growth. Sestrins are stress-inducible proteins, which suppress both mTORC1 and ER stress; however, the role of Sestrins in colon physiology and tumorigenesis has been elusive due to the lack of studies in human tissues or in appropriate animal models. In this study, we show that human SESN2 expression is elevated in the colon of ulcerative colitis patients but is lost upon p53 inactivation during colon carcinogenesis. In mouse colon, Sestrin2 was critical for limiting ER stress and promoting the recovery of epithelial cells after inflammatory injury. During colitis-promoted tumorigenesis, Sestrin2 was shown to be an important mediator of p53's control over mTORC1 signaling and tumor cell growth. These results highlight Sestrin2 as a novel tumor suppressor, whose downregulation can accelerate both colitis and colon carcinogenesis.

Keywords: cell biology; colitis; colon cancer; human; human biology; medicine; mouse; p53; sestrin2; tumor suppressor.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Carcinogenesis*
  • Colitis, Ulcerative / pathology*
  • Colon
  • Colonic Neoplasms / physiopathology*
  • Disease Models, Animal
  • Endoplasmic Reticulum Stress
  • Humans
  • Mice
  • Neoplasms
  • Nuclear Proteins / metabolism*
  • Tumor Suppressor Protein p53 / metabolism
  • Tumor Suppressor Proteins / metabolism*

Substances

  • Nuclear Proteins
  • SESN2 protein, human
  • Tumor Suppressor Protein p53
  • Tumor Suppressor Proteins