Characterization of Pseudomonas aeruginosa with discrepant carbapenem susceptibility profile

Ann Clin Microbiol Antimicrob. 2016 Feb 24:15:12. doi: 10.1186/s12941-016-0127-3.

Abstract

Pseudomonas aeruginosa is the most common nosocomial pathogen, notorious for its multidrug resistance and causes life threatening infections. Carbapenems were considered as the last resort of drugs for the treatment of multi drug resistant P. aeruginosa infections. The emergence of resistance to carbapenems limits its use for treatment. Unlike other organisms, in P. aeruginosa intrinsic/chromosomal mediated resistance mechanisms plays a major role for carbapenem resistance rather than the carbapenemases. Carbapenemase producing organisms becomes resistant to both imipenem and meropenem. However, in our clinical settings, we have observed rare carbapenem resistant phenotypes such as imipenem resistant but meropenem susceptible (IRMS) and meropenem resistant but imipenem susceptible (MRIS) phenotypes. Thus we have chosen these rare phenotypes to look for the respective resistance mechanisms by phenotypic and molecular methods. From this study we found that, IRMS is primarily due to the mutations across various regions in the loops of oprD gene and MRIS is due to the over expression of mexAB efflux pumps. This study results confirms that, this rare phenotypes are due to the intrinsic/chromosomal mediated mechanisms, which occurred due to the antibiotic selection pressure. This study also provided data concerning alterations in outer membrane permeability which is often associated with the increased levels of antibiotic efflux. Consequently, this study provided the prevalence of the various resistance mechanisms that have deployed by the organism to resist antibiotics through different phenotypes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Anti-Bacterial Agents / pharmacology*
  • Bacterial Proteins / genetics
  • Bacterial Proteins / metabolism
  • Carbapenems / pharmacology*
  • Drug Resistance, Bacterial
  • Humans
  • Microbial Sensitivity Tests
  • Pseudomonas Infections / microbiology*
  • Pseudomonas aeruginosa / drug effects*
  • Pseudomonas aeruginosa / genetics
  • Pseudomonas aeruginosa / metabolism

Substances

  • Anti-Bacterial Agents
  • Bacterial Proteins
  • Carbapenems