Backward terahertz radiation from intense laser-solid interactions

Opt Express. 2016 Feb 22;24(4):4010-21. doi: 10.1364/OE.24.004010.

Abstract

We report a systematic study on backward terahertz (THz) radiation generation from laser-solid interactions by changing a variety of laser/plasma parameters. We demonstrate a high-energy (with an energy flux density reaching 80 μJ/sr), broadband (>10 THz) plasma-based radiation source. The radiation energy is mainly distributed either in the >10 THz or <3 THz regions. A radial surface current formed by the lateral transport of low-energy electrons (LEE) is believed to be responsible for the radiation in the high-THz region (>10 THz), while high-energy surface fast electrons (SFE) accelerated along the target surface mainly contribute to lower frequency (<3 THz) radiation. The unifying explanation could be applied to backward THz radiation generation from solid targets with presence of relative small preplasmas.

Publication types

  • Research Support, Non-U.S. Gov't