Carbon and Nitrogen Uptake of Calcareous Benthic Foraminifera along a Depth-Related Oxygen Gradient in the OMZ of the Arabian Sea

Front Microbiol. 2016 Feb 11:7:71. doi: 10.3389/fmicb.2016.00071. eCollection 2016.

Abstract

Foraminifera are an important faunal element of the benthos in oxygen-depleted settings such as Oxygen Minimum Zones (OMZs) where they can play a relevant role in the processing of phytodetritus. We investigated the uptake of phytodetritus (labeled with (13)C and (15)N) by calcareous foraminifera in the 0-1 cm sediment horizon under different oxygen concentrations within the OMZ in the eastern Arabian Sea. The in situ tracer experiments were carried out along a depth transect on the Indian margin over a period of 4 to 10 days. The uptake of phytodetrital carbon within 4 days by all investigated species shows that phytodetritus is a relevant food source for foraminifera in OMZ sediments. The decrease of total carbon uptake from 540 to 1100 m suggests a higher demand for carbon by species in the low-oxygen core region of the OMZ or less food competition with macrofauna. Especially Uvigerinids showed high uptake of phytodetrital carbon at the lowest oxygenated site. Variation in the ratio of phytodetrital carbon to nitrogen between species and sites indicates that foraminiferal carbon and nitrogen use can be decoupled and different nutritional demands are found between species. Lower ratio of phytodetrital carbon and nitrogen at 540 m could hint for greater demand or storage of food-based nitrogen, ingestion, or hosting of bacteria under almost anoxic conditions. Shifts in the foraminiferal assemblage structure (controlled by oxygen or food availability) and in the presence of other benthic organisms are likely to account for observed changes in the processing of phytodetritus in the different OMZ habitats. Foraminifera dominate the short-term processing of phytodetritus in the OMZ core but are less important in the lower OMZ boundary region of the Indian margin as biological interactions and species distribution of foraminifera change with depth and oxygen levels.

Keywords: Arabian Sea; OMZ; carbon; foraminifera; in situ; nitrogen.