RNA helicase Belle/DDX3 regulates transgene expression in Drosophila

Dev Biol. 2016 Apr 1;412(1):57-70. doi: 10.1016/j.ydbio.2016.02.014. Epub 2016 Feb 18.

Abstract

Belle (Bel), the Drosophila homolog of the yeast DEAD-box RNA helicase DED1 and human DDX3, has been shown to be required for oogenesis and female fertility. Here we report a novel role of Bel in regulating the expression of transgenes. Abrogation of Bel by mutations or RNAi induces silencing of a variety of P-element-derived transgenes. This silencing effect depends on downregulation of their RNA levels. Our genetic studies have revealed that the RNA helicase Spindle-E (Spn-E), a nuage RNA helicase that plays a crucial role in regulating RNA processing and PIWI-interacting RNA (piRNA) biogenesis in germline cells, is required for loss-of-bel-induced transgene silencing. Conversely, Bel abrogation alleviates the nuage-protein mislocalization phenotype in spn-E mutants, suggesting a competitive relationship between these two RNA helicases. Additionally, disruption of the chromatin remodeling factor Mod(mdg4) or the microRNA biogenesis enzyme Dicer-1 (Dcr-1) also alleviates the transgene-silencing phenotypes in bel mutants, suggesting the involvement of chromatin remodeling and microRNA biogenesis in loss-of-bel-induced transgene silencing. Finally we show that genetic inhibition of Bel function leads to de novo generation of piRNAs from the transgene region inserted in the genome, suggesting a potential piRNA-dependent mechanism that may mediate transgene silencing as Bel function is inhibited.

Keywords: Belle; Dcr-1; Mod(mdg4); Spindle-E; Transgene silencing; miRNA; piRNAs.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Animals
  • Drosophila / genetics*
  • Drosophila Proteins / genetics*
  • Gene Silencing
  • Mutation
  • RNA Helicases / genetics*
  • Transgenes*

Substances

  • Drosophila Proteins
  • Bel protein, Drosophila
  • RNA Helicases