Very high or close to zero thermal expansion by the variation of the Sr/Ba ratio in Ba(1-x)Sr(x)Zn2Si2O7- solid solutions

Dalton Trans. 2016 Mar 21;45(11):4888-95. doi: 10.1039/c5dt04970a. Epub 2016 Feb 15.

Abstract

The compound BaZn2Si2O7 shows a highly positive coefficient of thermal expansion. At a temperature of 280 °C, it transforms to a high temperature phase, which exhibits a coefficient of thermal expansion near zero. The partial replacement of Ba(2+) against Sr(2+) leads to a decrease of the phase transition temperature. If more than 10% of Ba(2+) are replaced by Sr(2+), the high-temperature phase is completely stable at room temperature and consequently, the thermal expansion is near zero or negative. The effect of the Sr(2+)/Ba(2+)-ratio on the phase transition temperature and the thermal expansion behavior is measured using high-temperature X-ray diffraction up to 1000 °C. The Sr(2+)/Ba(2+)-ratio strongly affects the overall thermal expansion as well as the anisotropy. The latter increases with decreasing Sr-concentration. The strong differences in the thermal expansion behavior between phases with the structure of the low-temperature phase and the high-temperature phase of BaZn2Si2O7 can be explained by a comparison of the ZnO4-chains inside these two crystal structures.