Study of infrared emission spectroscopy for the B(1)Δg-A(1)Πu and B'(1)Σg(+)-A(1)Πu systems of C2

J Chem Phys. 2016 Feb 14;144(6):064301. doi: 10.1063/1.4940907.

Abstract

Thirteen bands for the B(1)Δg-A(1)Πu system and eleven bands for the B'(1)Σg(+)-A(1)Πu system of C2 were identified in the Fourier transform infrared emission spectra of hydrocarbon discharges. The B'(1)Σg(+)v = 4 and the B(1)Δg v = 6, 7, and 8 vibrational levels involved in nine bands were studied for the first time. A direct global analysis with Dunham parameters was carried out satisfactorily for the B(1)Δg-A(1)Πu system except for a small perturbation in the B(1)Δg v = 6 level. The calculated rovibrational term energies up to B(1)Δg v = 12 showed that the level crossing between the B(1)Δg and d(3)Πg states is responsible for many of the prominent perturbations in the Swan system observed previously. Nineteen forbidden transitions of the B(1)Δg-a(3)Πu transition were identified and the off-diagonal spin-orbit interaction constant AdB between d(3)Πg and B(1)Δg was derived as 8.3(1) cm(-1). For the B'(1)Σg(+)-A(1)Πu system, only individual band analyses for each vibrational level in the B'(1)Σg(+) state could be done satisfactorily and Dunham parameters obtained from these effective parameters showed that the anharmonic vibrational constant ωexe is anomalously small (nearly zero). Inspection of the RKR (Rydberg-Klein-Rees) potential curves for the B'(1)Σg(+) and X(1)Σg(+) states revealed that an avoided crossing or nearly avoided crossing may occur around 30,000 cm(-1), which is responsible for the anomalous molecular constants in these two states.

Publication types

  • Research Support, Non-U.S. Gov't