Scaling collapse at the jamming transition

Phys Rev E. 2016 Jan;93(1):012902. doi: 10.1103/PhysRevE.93.012902. Epub 2016 Jan 11.

Abstract

The jamming transition of particles with finite-range interactions is characterized by a variety of critical phenomena, including power-law distributions of marginal contacts. We numerically study a recently proposed simple model of jamming, which is conjectured to lie in the same universality class as the jamming of spheres in all dimensions. We extract numerical estimates of the critical exponents, θ=0.451±0.006 and γ=0.404±0.004, that match the exponents observed in sphere packing systems. We analyze finite-size scaling effects that manifest in a subcritical cutoff regime and size-independent but protocol-dependent scaling curves. Our results support the conjectured link with sphere jamming, provide more precise measurements of the critical exponents than previously reported, and shed light on the finite-size scaling behavior of continuous constraint satisfiability transitions.