Two-Dimensional Disorder in Black Phosphorus and Monochalcogenide Monolayers

Nano Lett. 2016 Mar 9;16(3):1704-12. doi: 10.1021/acs.nanolett.5b04613. Epub 2016 Feb 16.

Abstract

Ridged, orthorhombic two-dimensional atomic crystals with a bulk Pnma structure such as black phosphorus and monochalcogenide monolayers are an exciting and novel material platform for a host of applications. Key to their crystallinity, monolayers of these materials have a 4-fold degenerate structural ground state, and a single energy scale EC (representing the elastic energy required to switch the longer lattice vector along the x- or y-direction) determines how disordered these monolayers are at finite temperature. Disorder arises when nearest neighboring atoms become gently reassigned as the system is thermally excited beyond a critical temperature Tc that is proportional to EC/kB. EC is tunable by chemical composition and it leads to a classification of these materials into two categories: (i) Those for which EC ≥ kBTm, and (ii) those having kBTm > EC ≥ 0, where Tm is a given material's melting temperature. Black phosphorus and SiS monolayers belong to category (i): these materials do not display an intermediate order-disorder transition and melt directly. All other monochalcogenide monolayers with EC > 0 belonging to class (ii) will undergo a two-dimensional transition prior to melting. EC/kB is slightly larger than room temperature for GeS and GeSe, and smaller than 300 K for SnS and SnSe monolayers, so that these materials transition near room temperature. The onset of this generic atomistic phenomena is captured by a planar Potts model up to the order-disorder transition. The order-disorder phase transition in two dimensions described here is at the origin of the Cmcm phase being discussed within the context of bulk layered SnSe.

Keywords: 2D atomic materials; black phosphorus; layered monochalcogenides; molecular dynamics; phase transitions; structural degeneracies.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.

MeSH terms

  • Chalcogens / chemistry*
  • Molecular Dynamics Simulation
  • Nanostructures / chemistry*
  • Phase Transition*
  • Phosphorus / chemistry*
  • Temperature
  • Thermodynamics

Substances

  • Chalcogens
  • Phosphorus