Comparative Transcriptomic Exploration Reveals Unique Molecular Adaptations of Neuropathogenic Trichobilharzia to Invade and Parasitize Its Avian Definitive Host

PLoS Negl Trop Dis. 2016 Feb 10;10(2):e0004406. doi: 10.1371/journal.pntd.0004406. eCollection 2016 Feb.

Abstract

To date, most molecular investigations of schistosomatids have focused principally on blood flukes (schistosomes) of humans. Despite the clinical importance of cercarial dermatitis in humans caused by Trichobilharzia regenti and the serious neuropathologic disease that this parasite causes in its permissive avian hosts and accidental mammalian hosts, almost nothing is known about the molecular aspects of how this fluke invades its hosts, migrates in host tissues and how it interacts with its hosts' immune system. Here, we explored selected aspects using a transcriptomic-bioinformatic approach. To do this, we sequenced, assembled and annotated the transcriptome representing two consecutive life stages (cercariae and schistosomula) of T. regenti involved in the first phases of infection of the avian host. We identified key biological and metabolic pathways specific to each of these two developmental stages and also undertook comparative analyses using data available for taxonomically related blood flukes of the genus Schistosoma. Detailed comparative analyses revealed the unique involvement of carbohydrate metabolism, translation and amino acid metabolism, and calcium in T. regenti cercariae during their invasion and in growth and development, as well as the roles of cell adhesion molecules, microaerobic metabolism (citrate cycle and oxidative phosphorylation), peptidases (cathepsins) and other histolytic and lysozomal proteins in schistosomula during their particular migration in neural tissues of the avian host. In conclusion, the present transcriptomic exploration provides new and significant insights into the molecular biology of T. regenti, which should underpin future genomic and proteomic investigations of T. regenti and, importantly, provides a useful starting point for a range of comparative studies of schistosomatids and other trematodes.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adaptation, Biological*
  • Animals
  • Computational Biology*
  • Ducks / parasitology*
  • Gene Expression Profiling*
  • Host-Pathogen Interactions*
  • Life Cycle Stages
  • Metabolic Networks and Pathways / genetics
  • Molecular Sequence Data
  • Schistosomatidae / genetics*
  • Schistosomatidae / growth & development
  • Sequence Analysis, DNA

Associated data

  • BioProject/GDKR01000000

Grants and funding

The study was financially supported by a grant from the Czech Science Foundation (http://gacr.cz/en/), (no. 13-29577S; P.H. et al.) and the Charles University in Prague (http://www.cuni.cz/UKEN-65.html), (PRVOUK P41, UNCE 204017 and SVV 260202/2015; P.H. et al.). Funding from the National Health and Medical Research Council (https://www.nhmrc.gov.au), (NHMRC) of Australia, the Australian Research Council and Melbourne Water Corporation is gratefully acknowledged (R.B.G. et al.). This project was also supported by a Victorian Life Sciences Computation Initiative (https://www.vlsci.org.au) (VLSCI; grant number VR0007) on its Peak Computing Facility at the University of Melbourne, an initiative of the Victorian Government (R.B.G.). N.D.Y. holds an NHMRC Early Career Research Fellowship. P.K.K. is the recipient of a scholarship (STRAPA) from The University of Melbourne. The funders had no role in study design, data collection and analysis, decision to publish or preparation of the manuscript.