Assessment of Overlap of Phylogenetic Transmission Clusters and Communities in Simple Sexual Contact Networks: Applications to HIV-1

PLoS One. 2016 Feb 10;11(2):e0148459. doi: 10.1371/journal.pone.0148459. eCollection 2016.

Abstract

Background: Transmission patterns of sexually-transmitted infections (STIs) could relate to the structure of the underlying sexual contact network, whose features are therefore of interest to clinicians. Conventionally, we represent sexual contacts in a population with a graph, that can reveal the existence of communities. Phylogenetic methods help infer the history of an epidemic and incidentally, may help detecting communities. In particular, phylogenetic analyses of HIV-1 epidemics among men who have sex with men (MSM) have revealed the existence of large transmission clusters, possibly resulting from within-community transmissions. Past studies have explored the association between contact networks and phylogenies, including transmission clusters, producing conflicting conclusions about whether network features significantly affect observed transmission history. As far as we know however, none of them thoroughly investigated the role of communities, defined with respect to the network graph, in the observation of clusters.

Methods: The present study investigates, through simulations, community detection from phylogenies. We simulate a large number of epidemics over both unweighted and weighted, undirected random interconnected-islands networks, with islands corresponding to communities. We use weighting to modulate distance between islands. We translate each epidemic into a phylogeny, that lets us partition our samples of infected subjects into transmission clusters, based on several common definitions from the literature. We measure similarity between subjects' island membership indices and transmission cluster membership indices with the adjusted Rand index.

Results and conclusion: Analyses reveal modest mean correspondence between communities in graphs and phylogenetic transmission clusters. We conclude that common methods often have limited success in detecting contact network communities from phylogenies. The rarely-fulfilled requirement that network communities correspond to clades in the phylogeny is their main drawback. Understanding the link between transmission clusters and communities in sexual contact networks could help inform policymaking to curb HIV incidence in MSMs.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adult
  • Cluster Analysis
  • Community Networks / statistics & numerical data
  • Computer Simulation
  • Epidemics / prevention & control*
  • Genotype
  • HIV Infections / epidemiology*
  • HIV Infections / psychology
  • HIV Infections / transmission*
  • HIV Infections / virology
  • HIV-1 / classification
  • HIV-1 / genetics*
  • Homosexuality, Male
  • Humans
  • Incidence
  • Male
  • Middle Aged
  • Models, Statistical*
  • Phylogeny*
  • Residence Characteristics / statistics & numerical data
  • Sexual Partners
  • Switzerland / epidemiology

Grants and funding

L.V.’s research stay at the D-BSSE was partly funded by the ThinkSwiss program (http://thinkswiss.tumblr.com/About). L.V. received a training award from the Fonds de recherche du Québec-Santé (FRQS, http://www.frqs.gouv.qc.ca/en/). A.L. received a team grant from the Fonds de recherche—Nature et technologies (FRQNT, number 232259, http://www.frqnt.gouv.qc.ca/accueil). D.A.S. was awarded a Natural Sciences and Engineering Research Council of Canada (NSERC) Discovery Grant (http://www.nserc-crsng.gc.ca/index_eng.asp). D.A.S. is funding L.V.’s work with a Canadian Institutes of Health Research (CIHR) grant (CIHR HHP-126781, http://www.cihr-irsc.gc.ca/e/193.html). The SHCS is supported by the Swiss National Science Foundation (SNF grant number 148522, http://www.snf.ch/en/Pages/default.aspx) and by the SHCS Research Foundation (http://www.shcs.ch). R.K. was supported by the Swiss National Science Foundation (SNF grant number PZ00P3-142411). H.F.G. was supported by the Swiss National Science Foundation (SNF grant number 320030_159868) and by the Yvonne Jacob Foundation. T.S. is supported in part by the European Research Council under the Seventh Framework Programme of the European Commission (PhyPD: grant agreement number 335529, http://erc.europa.eu). The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.