Measurements of flow-induced birefringence in microfluidics

Biomicrofluidics. 2016 Jan 13;10(1):011903. doi: 10.1063/1.4939949. eCollection 2016 Jan.

Abstract

In this study, we demonstrate the use of a microscopic circular polariscope to measure the flow-induced birefringence in a microfluidic device that represents the kinematics of fluid motion optically. Unlike the commercial birefringence microscope employed in the previous studies, our approach is able to provide direct measurement of retardance, which quantifies the difference in refractive index of the fluid experienced by the ordinary and extraordinary rays, from one single image frame. This capability facilitates unsteady full-field quantitation of flow-induced birefringence in microfluidics that has never been achieved before. At low flow rates, we find that the value of the retardance is independent of the microfluidic design and proportional to the nominal strain rates. This linearity bridges the measurement of birefringence and the deformation rate in the microflow environment, which yields the stress information of the fluid flow. In addition, the μPIV results confirm that both extensional and shear strain rates contribute to the flow-induced birefringence so that the retardance distribution can be used to represent the field of the principal strain rate in a microfluidic device. The outcome of this study proves that our approach provides a non-invasive method that enables an intuitive full-field representation of stress in the instantaneous flow field in a microfluidic device.