Significant improvements in InGaN/GaN nano-photoelectrodes for hydrogen generation by structure and polarization optimization

Sci Rep. 2016 Feb 8:6:20218. doi: 10.1038/srep20218.

Abstract

The photoelectrodes based on III-nitride semiconductors with high energy conversion efficiency especially for those self-driven ones are greatly desirable for hydrogen generation. In this study, highly ordered InGaN/GaN multiple-quantum-well nanorod-based photoelectrodes have been fabricated by a soft UV-curing nano-imprint lithography and a top-down etching technique, which improve the incident photon conversion efficiency (IPCE) from 16% (planar structure) to 42% (@ wavelength = 400 nm). More significantly, the turn-on voltage is reduced low to -0.6 V, which indicates the possibility of achieving self-driven. Furthermore, SiO2/Si3N4 dielectric distributed Bragg reflectors are employed to further improve the IPCE up to 60%. And the photocurrent (@ 1.1 V) is enhanced from 0.37 mA/cm(2) (original planar structure) to 1.5 mA/cm(2). These improvements may accelerate the possible applications for hydrogen generation with high energy-efficiency.

Publication types

  • Research Support, Non-U.S. Gov't