Aryl-aryl interactions in designed peptide folds: Spectroscopic characteristics and optimal placement for structure stabilization

Biopolymers. 2016 Jun;105(6):337-356. doi: 10.1002/bip.22821.

Abstract

We have extended our studies of Trp/Trp to other Aryl/Aryl through-space interactions that stabilize hairpins and other small polypeptide folds. Herein we detail the NMR and CD spectroscopic features of these types of interactions. NMR data remains the best diagnostic for characterizing the common T-shape orientation. Designated as an edge-to-face (EtF or FtE) interaction, large ring current shifts are produced at the edge aryl ring hydrogens and, in most cases, large exciton couplets appear in the far UV circular dichroic (CD) spectrum. The preference for the face aryl in FtE clusters is W ≫ Y ≥ F (there are some exceptions in the Y/F order); this sequence corresponds to the order of fold stability enhancement and always predicts the amplitude of the lower energy feature of the exciton couplet in the CD spectrum. The CD spectra for FtE W/W, W/Y, Y/W, and Y/Y pairs all include an intense feature at 225-232 nm. An additional couplet feature seen for W/Y, W/F, Y/Y, and F/Y clusters, is a negative feature at 197-200 nm. Tyr/Tyr (as well as F/Y and F/F) interactions produce much smaller exciton couplet amplitudes. The Trp-cage fold was employed to search for the CD effects of other Trp/Trp and Trp/Tyr cluster geometries: several were identified. In this account, we provide additional examples of the application of cross-strand aryl/aryl clusters for the design of stable β-sheet models and a scale of fold stability increments associated with all possible FtE Ar/Ar clusters in several structural contexts. © 2016 Wiley Periodicals, Inc. Biopolymers 105: 337-356, 2016.

Keywords: Trp/Trp interaction; aromatic cluster; aromatic edge to face; beta-capping; beta-hairpin.