Graphene Oxide as an Effective Barrier on a Porous Nanofibrous Membrane for Water Treatment

ACS Appl Mater Interfaces. 2016 Mar 9;8(9):6211-8. doi: 10.1021/acsami.5b12723. Epub 2016 Feb 23.

Abstract

A novel graphene oxide (GO)-based nanofiltration membrane on a highly porous polyacrylonitrile nanofibrous mat (GO@PAN) is prepared for water treatment applications. GO with large lateral size (more than 200 μm) is first synthesized through an improved Hummers method and then assembled on a highly porous nanofibrous mat by vacuum suction method. The prepared GO@PAN membrane is characterized by scanning electron microscopy, transmission electron microscopy, Raman spectrum, X-ray diffraction, and so forth. The results show that graphene oxide can form a barrier on the top of a PAN nanofibrous mat with controllable thickness. The obtained graphene oxide layer exhibits "ideal" pathways (hydrophobic nanochannel) for water molecules between the well-stacked GO nanosheets. Water flux under an extremely low external pressure (1.0 bar) significantly increased due to the unique structure of the GO layer and nanofibrous support. Furthermore, the GO@PAN membrane shows high rejection performance (nearly 100% rejection of Congo red and 56.7% for Na2SO4). A hydrophilic-hydrophobic "gate"-nanochannel model is presented for explaining the water diffusion mechanism through the GO layer. This method for fabrication of the GO membrane on a highly porous support may provide many new opportunities for high performance nanofiltration applications.

Keywords: electrospun; graphene oxide; nanofibrous membrane; nanofiltration; water treatment.

Publication types

  • Research Support, Non-U.S. Gov't