Nelfinavir targets multiple drug resistance mechanisms to increase the efficacy of doxorubicin in MCF-7/Dox breast cancer cells

Biochimie. 2016 May:124:53-64. doi: 10.1016/j.biochi.2016.01.014. Epub 2016 Feb 1.

Abstract

Development of multidrug resistance (MDR) remains a significant problem in cancer chemotherapy and underscores the importance of using chemosensitizers. Well known MDR mechanisms include: (i) upregulation of drug-efflux; (ii) increased signaling via AKT; and (iii) decreased apoptosis. Therefore, chemosensitizers should target multiple resistance mechanisms. We investigated the efficacy of nelfinavir (NFV), a clinically approved anti-HIV drug, in increasing doxorubicin (DOX) toxicity in a MDR breast cancer cell line, MCF-7/Dox. As compared to parental MCF-7 cells, the MCF-7/Dox were 15-20 fold more resistant to DOX-induced cytotoxicity at 48 h post-exposure (DOX IC50 = 1.8 μM vs. 32.4 μM). Coexposures to NFV could significantly (p < 0.05) decrease DOX-IC50 in MCF-7/Dox cells. Multiple exposures to physiologic concentrations of NFV (2.25 μM or 6.75 μM) decreased DOX-IC50 by 21-fold and 50-fold, respectively. Interestingly, although single exposure to NFV transiently induced P-glycoprotein (P-gp) levels, multiple treatments with NFV inhibited both P-gp expression and efflux function, which increased intracellular DOX concentrations. Single exposure to NFV augmented the markers of cell-survival (AKT) and autophagy (LC3-II), whereas multiple exposures enabled suppression of both total AKT (t-AKT) and insulin like growth factor-1 (IGF-1)-induced phosphorylated AKT (p-AKT) levels. Multiple exposures to NFV also resulted in increased unfolded protein response (UPR) transducers, e.g. Grp78, p-PERK, p-eIF2α, and ATF-4; and endoplasmic reticulum (ER) stress induced death sensors, e.g. CHOP & TRIB-3. Multiple exposures to NFV also abrogated the mitogenic effects of IGF-1. In mice carrying MCF-7/Dox tumor xenografts, intraperitoneal (i.p.) injection of NFV (20 mg/kg/day) and DOX (2 mg/kg/twice/wk) decreased tumor growth more significantly (p < 0.01) than either agent alone. Immunohistochemical (IHC) analysis revealed decreased p-AKT and Ki-67 levels. Thus, NFV overcomes MDR in breast cancer cells and should be tested as an adjunct to chemotherapy.

Keywords: Breast cancer; Chemosensitization; Doxorubicin; MDR; Nelfinavir; Tumor xenograft.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Breast Neoplasms* / drug therapy
  • Breast Neoplasms* / metabolism
  • Breast Neoplasms* / pathology
  • Doxorubicin / pharmacology*
  • Drug Resistance, Multiple / drug effects*
  • Drug Resistance, Neoplasm / drug effects*
  • Endoplasmic Reticulum Chaperone BiP
  • Female
  • Humans
  • MCF-7 Cells
  • Mice
  • Mice, Inbred BALB C
  • Mice, Nude
  • Nelfinavir / pharmacology*
  • Xenograft Model Antitumor Assays

Substances

  • Endoplasmic Reticulum Chaperone BiP
  • HSPA5 protein, human
  • Hspa5 protein, mouse
  • Doxorubicin
  • Nelfinavir