Induction of de novo α-synuclein fibrillization in a neuronal model for Parkinson's disease

Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):E912-21. doi: 10.1073/pnas.1512876113. Epub 2016 Feb 2.

Abstract

Lewy bodies (LBs) are intraneuronal inclusions consisting primarily of fibrillized human α-synuclein (hα-Syn) protein, which represent the major pathological hallmark of Parkinson's disease (PD). Although doubling hα-Syn expression provokes LB pathology in humans, hα-Syn overexpression does not trigger the formation of fibrillar LB-like inclusions in mice. We hypothesized that interactions between exogenous hα-Syn and endogenous mouse synuclein homologs could be attenuating hα-Syn fibrillization in mice, and therefore, we systematically assessed hα-Syn aggregation propensity in neurons derived from α-Syn-KO, β-Syn-KO, γ-Syn-KO, and triple-KO mice lacking expression of all three synuclein homologs. Herein, we show that hα-Syn forms hyperphosphorylated (at S129) and ubiquitin-positive LB-like inclusions in primary neurons of α-Syn-KO, β-Syn-KO, and triple-KO mice, as well as in transgenic α-Syn-KO mouse brains in vivo. Importantly, correlative light and electron microscopy, immunogold labeling, and thioflavin-S binding established their fibrillar ultrastructure, and fluorescence recovery after photobleaching/photoconversion experiments showed that these inclusions grow in size and incorporate soluble proteins. We further investigated whether the presence of homologous α-Syn species would interfere with the seeding and spreading of α-Syn pathology. Our results are in line with increasing evidence demonstrating that the spreading of α-Syn pathology is most prominent when the injected preformed fibrils and host-expressed α-Syn monomers are from the same species. These findings provide insights that will help advance the development of neuronal and in vivo models for understanding mechanisms underlying hα-Syn intraneuronal fibrillization and its contribution to PD pathogenesis, and for screening pharmacologic and genetic modulators of α-Syn fibrillization in neurons.

Keywords: Parkinson’s disease; aggregation; alpha-synuclein.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Animals
  • Disease Models, Animal*
  • Mice
  • Mice, Knockout
  • Neurons / metabolism*
  • Parkinson Disease / metabolism*
  • alpha-Synuclein / genetics
  • alpha-Synuclein / metabolism*

Substances

  • alpha-Synuclein