Kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator

Opt Express. 2016 Jan 25;24(2):1758-72. doi: 10.1364/OE.24.001758.

Abstract

A direct-liquid-cooled Nd:YLF thin disk laser resonator is presented, which features the use of refractive index matching liquid (RIML) as coolant. Highly uniform pump intensity distribution with rectangular shape is realized by using metallic planar waveguides. Much attention has been paid on the design of the gain module, including how to achieve excellent cooling ability with multi-channel coolers and how to choose the doping levels of the crystals for realizing well-distributed pump absorption. The flow velocity of the coolant is found to be a key parameter for laser performance and optimized to keep it in laminar flow status for dissipating unwanted heat load. A single channel device is used to measure the convective heat transfer coefficient (CHTC) at different flow velocities. Accordingly, the thermal stress in the disk is analyzed numerically and the maximum permissible thermal load is estimated. Experimentally, with ten pieces of a-cut Nd:YLF thin disks of different doping levels, a linear polarized laser with an average output power of 1120 W is achieved at the pump power of 5202 W, corresponding to an optical-optical efficiency of 21.5%, and a slope efficiency of 30.8%. Furthermore, the wavefront aberration of the gain module is measured to be quite weak, with a peak to valley (PV) value of 4.0 μm when it is pumped at 5202 W, which enables the feasibility of its application in an unstable resonator. To the best of our knowledge, this is the first demonstration of kilowatt-level direct-'refractive index matching liquid'-cooled Nd:YLF thin disk laser resonator.

Publication types

  • Research Support, Non-U.S. Gov't