ABA receptor PYL9 promotes drought resistance and leaf senescence

Proc Natl Acad Sci U S A. 2016 Feb 16;113(7):1949-54. doi: 10.1073/pnas.1522840113. Epub 2016 Feb 1.

Abstract

Drought stress is an important environmental factor limiting plant productivity. In this study, we screened drought-resistant transgenic plants from 65 promoter-pyrabactin resistance 1-like (PYL) abscisic acid (ABA) receptor gene combinations and discovered that pRD29A::PYL9 transgenic lines showed dramatically increased drought resistance and drought-induced leaf senescence in both Arabidopsis and rice. Previous studies suggested that ABA promotes senescence by causing ethylene production. However, we found that ABA promotes leaf senescence in an ethylene-independent manner by activating sucrose nonfermenting 1-related protein kinase 2s (SnRK2s), which subsequently phosphorylate ABA-responsive element-binding factors (ABFs) and Related to ABA-Insensitive 3/VP1 (RAV1) transcription factors. The phosphorylated ABFs and RAV1 up-regulate the expression of senescence-associated genes, partly by up-regulating the expression of Oresara 1. The pyl9 and ABA-insensitive 1-1 single mutants, pyl8-1pyl9 double mutant, and snrk2.2/3/6 triple mutant showed reduced ABA-induced leaf senescence relative to the WT, whereas pRD29A::PYL9 transgenic plants showed enhanced ABA-induced leaf senescence. We found that leaf senescence may benefit drought resistance by helping to generate an osmotic potential gradient, which is increased in pRD29A::PYL9 transgenic plants and causes water to preferentially flow to developing tissues. Our results uncover the molecular mechanism of ABA-induced leaf senescence and suggest an important role of PYL9 and leaf senescence in promoting resistance to extreme drought stress.

Keywords: Arabidopsis; PYL; abscisic acid; dormancy; drought stress.

Publication types

  • Research Support, N.I.H., Extramural
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Abscisic Acid / metabolism*
  • Arabidopsis / physiology*
  • Arabidopsis Proteins / genetics
  • Arabidopsis Proteins / metabolism
  • Arabidopsis Proteins / physiology*
  • Carrier Proteins / genetics
  • Carrier Proteins / metabolism
  • Carrier Proteins / physiology*
  • Droughts*
  • Intracellular Signaling Peptides and Proteins
  • Oryza / genetics
  • Oryza / physiology
  • Phosphorylation
  • Plant Leaves / physiology*
  • Plants, Genetically Modified
  • Signal Transduction
  • Stress, Physiological

Substances

  • Arabidopsis Proteins
  • Carrier Proteins
  • Intracellular Signaling Peptides and Proteins
  • RCAR1 protein, Arabidopsis
  • Abscisic Acid