Total and Labile Phosphorus Concentrations as Influenced by Riparian Buffer Soil Properties

J Environ Qual. 2016 Jan;45(1):294-304. doi: 10.2134/jeq2015.07.0345.

Abstract

Riparian buffers can act as a phosphorus (P) source under active stream bank erosion. Using soil and landscape variables (soil series, drainage class, organic matter, and pH) to index P concentrations could improve P loss risk tools for buffers. The objectives of this study were (i) to determine if soil properties could predict total and labile P concentrations within a 10-ha riparian buffer and (ii) to quantify the degree of spatial dependence of P and related properties. Soil samples were taken in 15-cm increments to a depth of 60 cm using a grid ( = 71) from an established riparian buffer along the Rock River in Vermont. Total soil P (TP), plant-available P determined by Modified Morgan extraction (MM-P), pH, soil organic matter (SOM), soil texture, and select cations were measured. We found that TP (152-1536 mg P kg) and MM-P (0.4-14.6 mg kg) ranged widely, with distinct differences between soil series. Mean TP and MM-P were greater in alluvial and glaciolacustrine soils compared with glacial till. Across all samples, MM-P was weakly related to soil properties; however, total labile P (orthophosphate + organic P measured by ICP) and unreactive labile P (ICP-P - colorimetric-P) could both be predicted by SOM ( = 0.59 and 0.73, respectively). Strong spatial dependence was found for P and related properties as revealed by geospatial analyses. Results show that P availability in the buffer was strongly related to soil genesis and support site-specific approaches for P loss risk evaluation in buffers.

MeSH terms

  • Phosphorus / analysis*
  • Plants
  • Rivers
  • Soil / chemistry*

Substances

  • Soil
  • Phosphorus