Sub-harmonic broadband humps and tip noise in low-speed ring fans

J Acoust Soc Am. 2016 Jan;139(1):118-27. doi: 10.1121/1.4939493.

Abstract

A joint experimental and numerical study has been achieved on a low-speed axial ring fan in clean inflow. Experimental evidence shows large periodic broadband humps at lower frequencies than the blade passing frequencies and harmonics even at design conditions. These sub-harmonic humps are also found to be sensitive to the fan process and consequently to its tip geometry. Softer fans yield more intense humps more shifted to lower frequencies with respect to the fan harmonics. Unsteady turbulent flow simulations of this ring fan mounted on a test plenum have been achieved by four different methods that have been validated by comparing with overall performances and detailed hot-wire velocity measurements in the wake. Noise predictions are either obtained directly or are obtained through Ffowcs Williams and Hawkings' analogy, and compared with narrowband and third-octave power spectra. All unsteady simulations correctly capture the low flow rates, the coherent vortex dynamics in the tip clearance and consequently the noise radiation dominated by the tip noise in the low- to mid-frequency range. Yet, only the scale-adaptive simulation and the lattice Boltzmann method simulations which can describe most of the turbulent structures accurately provide the proper spectral shape and levels, and consequently the overall sound power level.

Publication types

  • Research Support, Non-U.S. Gov't