Nicking endonuclease-assisted recycling of target-aptamer complex for sensitive electrochemical detection of adenosine triphosphate

Analyst. 2016 Feb 21;141(4):1506-11. doi: 10.1039/c5an02484f.

Abstract

An electrochemical biosensor was developed for the detection of adenosine triphosphate (ATP) based on target-induced conformation switching and nicking endonuclease (NEase)-assisted signal amplification. The electrochemical biosensor was constructed by base pairing and target recognition. After capture DNA hybridized with the gold electrode, a significant current of Methylene Blue (MB) was obtained by differential pulse voltammetry. In the presence of ATP, the hairpin DNA formed a G-quadruplex structure due to the specific recognition between hairpin DNA and ATP. Then the exposed part of the target-aptamer complex hybridized with the 3'-terminus of capture DNA to form a specific nicking site for Nb.BbvCI, which led to NEase-assisted target-aptamer complex recycling. The released target-aptamer complex hybridized with the remaining capture DNA. Nb.BbvCI-assisted target-aptamer complex recycling caused the continuous cleavage of capture DNA with MB at its 5'-terminus, resulting in release of a certain amount of DNA fragment labeled with MB. Then the current value decreased significantly. The reduced current showed a linear range from 10 nM to 1 μM with a limit of detection as low as 3.4 nM. Furthermore, the proposed strategy can be used for the detection of similar substances.

Publication types

  • Research Support, Non-U.S. Gov't

MeSH terms

  • Adenosine Triphosphate / analysis*
  • Adenosine Triphosphate / metabolism
  • Aptamers, Nucleotide / genetics
  • Aptamers, Nucleotide / metabolism*
  • Base Sequence
  • Biosensing Techniques / methods*
  • Electrochemistry
  • Endonucleases / metabolism*
  • Limit of Detection*
  • Reproducibility of Results

Substances

  • Aptamers, Nucleotide
  • Adenosine Triphosphate
  • Endonucleases