Complex formation and turnover of mitochondrial transporters and ion channels

J Bioenerg Biomembr. 2017 Feb;49(1):101-111. doi: 10.1007/s10863-016-9648-x. Epub 2016 Jan 26.

Abstract

Mitochondria are responsible for many vital cellular functions in eukaryotic cells, such as ATP production, steroid synthesis and prosthetic group biogenesis. The vital functions of mitochondria are possible due to the compartmental nature of this organelle. Mitochondria form a dynamic network that can exist as a network throughout a cell or as distinct individual structures. Mitochondria are also composed of two membranes, an inner and outer membrane. The inner mitochondrial membrane (IMM) is significantly larger than the outer membrane and must fold upon itself to be contained within the outer mitochondrial membrane (OMM). These folds are known as cristae. Altogether these different membrane compartments specialize in different functions of the mitochondria. The OMM is responsible for passage of small metabolites into and out of the mitochondria while excluding macromolecules. The IMM is a highly selective barrier between the solutes of the cytosol and those within the mitochondrial matrix. Cristae specialize in oxidative phosphorylation. The functions of these membranes are afforded by membrane proteins that are able to transport specific solutes. The appropriate localization, assembly into multi-subunit protein complexes, and wild-type function of these membrane proteins therefore is vital for mitochondria to maintain appropriate function and support cellular survival. This review will address the composition and functions of mitochondrial membrane localized multi-subunit protein complexes along with how these proteins undergo degradation to maintain homeostatic functions of mitochondria in the context of mitochondria specific transporters and ion channels. Due to the large number of known mitochondrial membrane transporters and ion channels this review will focus on the topics presented at the Mitochondrial Ion Channels and Transporters Symposium hosted by the New York University College of Dentistry in September 2015 in honor of Casey Kinnally.

Keywords: Degradation; Mitochondrial ion channel; Mitochondrial membrane complex; Mitochondrial transporter.

Publication types

  • Review

MeSH terms

  • Animals
  • Biological Transport
  • Humans
  • Ion Channels / metabolism*
  • Mitochondria / chemistry
  • Mitochondria / metabolism
  • Mitochondrial Membrane Transport Proteins / metabolism*
  • Mitochondrial Membranes / metabolism*

Substances

  • Ion Channels
  • Mitochondrial Membrane Transport Proteins