Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice

Nano Lett. 2016 Feb 10;16(2):1262-9. doi: 10.1021/acs.nanolett.5b04588. Epub 2016 Jan 25.

Abstract

We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton-plasmon coupling strength, polariton composition, and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices.

Keywords: MoS2; plasmonic lattice; plexciton; polariton; strong coupling.

Publication types

  • Research Support, U.S. Gov't, Non-P.H.S.