Enhanced degradation performances of plate-like micro/nanostructured zero valent iron to DDT

J Hazard Mater. 2016 Apr 15:307:145-53. doi: 10.1016/j.jhazmat.2015.12.063. Epub 2016 Jan 4.

Abstract

Micro/nanostructured zero valent iron (MNZVI) is successfully mass-synthesized by ball-milling the industrially-reduced iron powders. The as-prepared MNZVI is plate-like in morphology with about 2-5μm in planar size and 35-55nm in thickness, and ∼16m(2)/g in specific surface area. Such plate-like MNZVI has demonstrated much higher degradation performances to DDT [or 1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane] in the aqueous solution than the commercial ZVI powders under acidic conditions. The MNZVI-induced DDT degradation is also much faster than the previously reported results. The time-dependent DDT removal amount can be described by the pseudo first-order kinetic model. Further experiments have shown that more than 50% of DDT can be mineralized in 20min and the rest is dechlorinated to DDX (the products with less chlorine). It has been revealed that the DDT degradation could be attributed to the acid assisted ZVI-induced mineralization and dechlorination. The mineralization process is dominant during the initial stage within 20min, and the dechlorination is the main reaction in the anaphase of the degradation. This work not only deepens understanding of DDT degradation but also could provide a highly efficient material for the practical treatment of the DDT in a real environment.

Keywords: DDT degradation; Mineralization and dechlorination; Plate-like micro/nanostructured iron.

Publication types

  • Research Support, Non-U.S. Gov't