Preconcentration of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) with ethylenediamine-modified graphene oxide

Mikrochim Acta. 2016:183:231-240. doi: 10.1007/s00604-015-1629-y. Epub 2015 Sep 7.

Abstract

We describe a novel solid phase sorbent that was synthesized by coupling graphene oxide (GO) to ethylenediamine (EDA). This nanomaterial (referred to as GO-EDA) is capable of adsorbing the ions of iron, cobalt, nickel, copper, zinc and lead. The ethylenediamine-modified graphene oxide was characterized by X-ray photoelectron spectroscopy, scanning electron microscopy and Fourier transform infrared spectroscopy. The analytical procedure relies on (a) sorption of metal ions on GO-EDA dispersed in aqueous samples; (b) filtering, and (c) direct submission of the filter paper to energy-dispersive X-ray fluorescence spectrometry. This kind of dispersive micro-solid phase extraction was optimized with respect to pH values, concentration of GO-EDA, contact time, and the effects of interfering ions and humic acid on recovery of determined elements. Under optimized conditions, the recoveries of spiked samples range from 90 to 98 %. The detection limits are 0.07, 0.10, 0.07, 0.08, 0.06 and 0.10 ng mL-1 for Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II), respectively. The method has a relative standard deviation of <6 %, and its accuracy was verified by analysis of two standard reference materials [LGC6016 (estuarine water) and BCR-610 (groundwater)]. It was successfully applied to the determination of trace amounts of these metal ions in water samples. Graphical AbstractGraphene oxide was coupled to ethylenediamine in order to obtain an effective sorbent (GO-EDA) for preconcentration of Fe(III), Co(II), Ni(II), Cu(II), Zn(II) and Pb(II) from environmental water samples.

Keywords: Energy-dispersive spectrometry; Environmental analysis; Micro-solid phase extraction; Modified graphene oxide; Scanning electron microscopy; Sorbent; X-ray fluorescence spectrometry.