Effects of Hypothermic Cardiopulmonary Bypass on Internal Jugular Bulb Venous Oxygen Saturation, Cerebral Oxygen Saturation, and Bispectral Index in Pediatric Patients Undergoing Cardiac Surgery: A Prospective Study

Medicine (Baltimore). 2016 Jan;95(2):e2483. doi: 10.1097/MD.0000000000002483.

Abstract

The objective of this study was to evaluate the effect of hypothermic cardiopulmonary bypass (CPB) on cerebral oxygen saturation (rSO2), internal jugular bulb venous oxygen saturation (SjvO2), mixed venous oxygen saturation (SvO2), and bispectral index (BIS) used to monitor cerebral oxygen balance in pediatric patients.Sixty American Society of Anesthesiologists Class II-III patients aged 1 to 4 years old with congenital heart disease scheduled for elective cardiac surgery were included in this study. Temperature, BIS, rSO2, mean arterial pressure, central venous pressure, cerebral perfusion pressure (CPP), and hematocrit were recorded. Internal jugular bulb venous oxygen saturation and SvO2 were obtained from blood gas analysis at the time points: after induction of anesthesia (T0), beginning of CPB (T1), ascending aortic occlusion (T2), 20 minutes after initiating CPB (T3), coronary reperfusion (T4), separation from CPB (T5), and at the end of operation (T6). The effect of hypothermia or changes in CPP on rSO2, SjvO2, SvO2, and BIS were analyzed.Compared with postinduction baseline values, rSO2 significantly decreased at all-time points: onset of extracorporeal circulation, ascending aortic occlusion, 20 minutes after CPB initiation, coronary reperfusion, and separation from CPB (P < 0.05). Compared with measurements made following induction of anesthesia, SjvO2 significantly increased with initiation of CPB, ascending aortic occlusion, 20 minutes after initiating CPB, coronary reperfusion, and separation from CPB (P < 0.05). Compared with induction of anesthesia, BIS significantly decreased with the onset of CPB, aortic cross clamping, 20 minutes after initiating CPB, and coronary reperfusion (P < 0.05). Bispectral index increased following separation from CPB. There was no significant change in SvO2 during cardiopulmonary bypass (P > 0.05). Correlation analysis demonstrated that rSO2 was positively related to CPP (r = 0.687, P = 0.000), with a low linear correlation to temperature (r = 0.453, P = 0.000). Internal jugular bulb venous oxygen saturation was negatively related to temperature (r = -0.689, P = 0.000). Bispectral index was positively related to both temperature (r = 0.824, P = 0.000) and CPP (r = 0.782, P = 0.000). Cerebral oxygen saturation had a positive linear correlation with CPP and a low linear correlation to temperature. Internal jugular bulb venous oxygen saturation had a negative linear correlation to temperature.Pre-and and early postbypass periods are vulnerable times for adequate cerebral oxygenation. Anesthetic management must aim to optimize the supply and demand relationship.

Publication types

  • Clinical Trial
  • Comparative Study
  • Research Support, Non-U.S. Gov't

MeSH terms

  • Brain / blood supply
  • Cardiac Surgical Procedures / adverse effects
  • Cardiac Surgical Procedures / methods
  • Cardiopulmonary Bypass / adverse effects
  • Cardiopulmonary Bypass / methods*
  • Cerebrovascular Circulation / physiology
  • Child, Preschool
  • Female
  • Heart Defects, Congenital / diagnosis
  • Heart Defects, Congenital / surgery*
  • Humans
  • Hypothermia, Induced / methods*
  • Hypoxia, Brain / prevention & control*
  • Infant
  • Jugular Veins / metabolism
  • Linear Models
  • Male
  • Monitoring, Physiologic
  • Oximetry / methods
  • Oxygen / blood*
  • Oxygen Consumption / physiology*
  • Prospective Studies

Substances

  • Oxygen

Associated data

  • ChiCTR/CHICTR-ONRC-14005050