Small-scale behavior of Hall magnetohydrodynamic turbulence

Phys Rev E Stat Nonlin Soft Matter Phys. 2015 Dec;92(6):063102. doi: 10.1103/PhysRevE.92.063102. Epub 2015 Dec 4.

Abstract

Decaying Hall magnetohydrodynamic (HMHD) turbulence is studied using three-dimensional (3D) direct numerical simulations with grids up to 768(3) points and two different types of initial conditions. Results are compared to analogous magnetohydrodynamic (MHD) runs and both Laplacian and Laplacian-squared dissipative operators are examined. At scales below the ion inertial length, the ratio of magnetic to kinetic energy as a function of wave number transitions to a magnetically dominated state. The transition in behavior is associated with the advection term in the momentum equation becoming subdominant to dissipation. Examination of autocorrelation functions reveals that, while current and vorticity structures are similarly sized in MHD, HMHD current structures are narrower and vorticity structures are wider. The electric field autocorrelation function is significantly narrower in HMHD than in MHD and is similar to the HMHD current autocorrelation function at small separations. HMHD current structures are found to be significantly more intense than in MHD and appear to have an enhanced association with strong alignment between the current and magnetic field, which may be important in collisionless plasmas where field-aligned currents can be unstable. When hyperdiffusivity is used, a longer region consistent with a k(-7/3) scaling is present for right-polarized fluctuations when compared to Laplacian dissipation runs.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.