Purification and characterization of OBF1: a Saccharomyces cerevisiae protein that binds to autonomously replicating sequences

Mol Cell Biol. 1989 Jul;9(7):2906-13. doi: 10.1128/mcb.9.7.2906-2913.1989.

Abstract

We previously identified a protein activity from Saccharomyces cerevisiae, OBF1, that bound specifically to a DNA element present in autonomously replicating sequences ARS120 and ARS121 (S. Eisenberg C. Civalier, and B. K. Tye, Proc. Natl. Acad. Sci. USA 85:743-746, 1988). OBF1 has now been purified to near homogeneity by conventional protein and DNA affinity chromatography. Electrophoresis of the purified protein in sodium dodecyl sulfate-polyacrylamide gels revealed the presence of two polypeptides. The major protein band had a relative molecular size of 123 kilodaltons, and the minor protein band, which constituted only a small fraction of total protein, had a molecular size of 127 kilodaltons. Both polypeptides cochromatographed with the specific ARS120 DNA-binding activity and formed a stable protein-DNA complex, isolatable by sedimentation through sucrose gradients. Using antibodies, we have shown that both polypeptides are associated with the isolated protein-DNA complexes. The ARS DNA-binding activity had a Stokes radius of 54 A (5.4 nm) and a sedimentation coefficient of 4.28S, as determined by gel filtration and sedimentation through glycerol gradients, respectively. These physical parameters, together with the denatured molecular size values, suggested that the proteins exist in solution as asymmetric monomers. Since both polypeptides recognized identical sequences and had similar physical properties, they are probably related. In addition to binding to ARS120, we found that purified OBF1 bounds with equal affinity to ARS121 and with 5- and 10-fold-lower affinity to ARS1 and HMRE, respectively. Furthermore, in the accompanying paper (S. S. Walker, S. C. Francesconi, B. K. Tye, and S. Eisenberg, Mol. Cell. Biol. 9:2914-2921, 1989), we demonstrate the existence of a high, direct correlation between the ability of purify OBF1 to bind to ARS121 and optimal in vivo ARS121 activity as an origin of replication. These findings, taken together, suggest a role for OBF1 in ARS function, presumably at the level of initiation of DNA replication at the ARS.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, P.H.S.

MeSH terms

  • Binding Sites
  • Blotting, Western
  • Chromatography, Affinity
  • Chromatography, Gel
  • DNA, Fungal / metabolism*
  • DNA-Binding Proteins / isolation & purification*
  • DNA-Binding Proteins / metabolism
  • Electrophoresis, Polyacrylamide Gel
  • Fungal Proteins / isolation & purification*
  • Fungal Proteins / metabolism
  • Molecular Weight
  • Plasmids
  • Replicon*
  • Saccharomyces cerevisiae / genetics*

Substances

  • DNA, Fungal
  • DNA-Binding Proteins
  • Fungal Proteins