Nanostructured Ternary FeCrAl Oxide Photocathodes for Water Photoelectrolysis

J Am Chem Soc. 2016 Feb 17;138(6):1860-7. doi: 10.1021/jacs.5b08040. Epub 2016 Feb 8.

Abstract

A sol-gel method for the synthesis of semiconducting FeCrAl oxide photocathodes for solar-driven hydrogen production was developed and applied for the production of meso- and macroporous layers with the overall stoichiometry Fe0.84Cr1.0Al0.16O3. Using transmission electron microscopy and energy-dispersive X-ray spectroscopy, phase separation into Fe- and Cr-rich phases was observed for both morphologies. Compared to prior work and to the mesoporous layer, the macroporous FeCrAl oxide photocathode had a significantly enhanced photoelectrolysis performance, even at a very early onset potential of 1.1 V vs RHE. By optimizing the macroporous electrodes, the device reached current densities of up to 0.68 mA cm(-2) at 0.5 V vs RHE under AM 1.5 with an incident photon-to-current efficiency (IPCE) of 28% at 400 nm without the use of catalysts. Based on transient measurements, this performance increase could be attributed to an improved collection efficiency. At a potential of 0.75 V vs RHE, an electron transfer efficiency of 48.5% was determined.

Publication types

  • Research Support, Non-U.S. Gov't
  • Research Support, U.S. Gov't, Non-P.H.S.